APPENDIX F—CONFIGURING AND USING SQL SERVERS

Required Software

The standard WRDB installation includes a product called SQL Links and Borland Database Engine (BDE) by Borland International (now known as Inprise Corporation). These products allow Paradox to access standard PC database files like Paradox and dBase.

By default, WRDB is configured to work with Paradox files on your own local computer and there is little need to use the BDE configuration utility. If you want to access shared database tables over a network or if you want to access a database server like Oracle, you must use the BDE Administrator program to configure your computer appropriately. You can launch this program from the Start menu or run it from within WRDB, accessing it on the File | File Management menu. In either case, changes made to BDE do not take effect until the next time you start WRDB.

BDE and SQL Links also allow you to access data on Client-server SQL databases (like Oracle, Microsoft SQL Server, Interbase, Sybase, and MySQL). Paradox is the client “front-end” software providing the user interface and data analysis and presentation functions. BDE allows Paradox to connect to and understand information stored in a variety of ways. Although SQL Links supports a number of SQL database servers including those listed above, WRDB has only been tested using Oracle version 8i, MS SQL Server version 7, and MySQL version 3.23. The use of Open Database Connectivity (ODBC) drivers appears to be the best approach for connecting to these servers (as opposed to the use of “native” BDE drivers).

Before you can access an SQL server, your computer must be configured to use the TCP/IP protocol and have direct access to an intranet or the Internet. Furthermore, you must have established a low-level connection to the database server. Once this is done, ODBC and BDE are used to complete the connection (as explained below). Initializing access to a SQL server can be quite complicated and these instructions are intended to be used by an organization’s WRDB Administrator and SQL Server database administrator (DBA).

This appendix is written primarily as a reference for the DBA, not the end-user. The DBA may elect to bypass the “Easy Configuration” steps illustrated below by directly installing three ASCII files saved in the WRDB program directory named Listener.ora, Sqlnet.ora, and Tnsnames.ora. These files must be placed in the Orawin95\Net80\Admin directory.

Configuring for Access to Oracle

As previously stated, your computer must have TCP/IP access to a domain in which the Oracle server resides. This is usually confirmed by using an Internet browser such as Netscape or Internet Explorer.

Next, install the appropriate low-level Oracle utilities that allow you to connect to the Oracle server. These are available from the Oracle DBA or directly from Oracle Corporation (www.oracle.com) as part of Oracle8i Personal Edition. The package “Oracle for Windows 95” must be installed, which includes a program called Oracle Net8 Configuration Assistant. In addition, the ODBC driver should be installed. Although other programs in the package may also work (such as “Net8 Assistant”), the steps for Oracle Net8 Configuration Assistant will be shown here. The example will show how to attach to Georgia EPD’s Oracle 8 Production server.

First start the program and select “Local Net Service Name configuration”:

[image: image1.png]
Next, add a new service using the following screens:

[image: image2.png] [image: image3.png]
Specify the Oracle SID for the server, and then use the TCP/IP protocol to communicate:

[image: image4.png] [image: image5.png]
The host name is the domain name of the server; use the default port number:

[image: image6.png]
When done, elect to perform a connection test:

[image: image7.png] [image: image8.png]
If the connection test is not successful, click the Change Login button and specify the username and password provided by the Oracle DBA.

Finally, give the service a name (this will be used in a moment when configuring the ODBC driver):

[image: image9.png]
Configuring ODBC-Oracle 8i

Once the Oracle Service Name has been set up and successfully tested, its time to configure ODBC. On the Windows Control panel, select ODBC Data Sources (32 bit) (or you can start the “Microsoft ODBC Administrator” from the Oracle menu; it brings up the same program), then click the Add button and select the Oracle ODBC Driver:

[image: image10.png] [image: image11.png]
The “data source name” is anything you want to use (we’ll need it when we configure BDE in a moment). The service name must be the same as was entered on the last screen of the Oracle setup:

[image: image12.png]
Configuring ODBC-Microsoft SQL Server 7

Microsoft SQL Server is a high performance server quite similar to Oracle. If you wish, you can install the Microsoft Database Engine (MSDE) from free, although administration tools are not available (these may be added to WRDB in the future). Unlike Oracle, there is no need to run a configuration program prior to configuring the SQL Server ODBC (configuration is done within the ODBC driver). As with the Oracle ODBC setup, add a new data source except use the SQL Server driver from the list. The configuration dialog looks like this:

[image: image13.png]
The “name” is anything you want to use (we’ll need it when we configure BDE in a moment). If the MS SQL Server has yet to be configured, the drop-down list of SQL Servers will be empty; just enter a name you want to refer to the server by and click Next:

[image: image14.png]
Use SQL Server authentication and (if you entered a new server name on the previous screen) click the Client Configuration button:

[image: image15.png]
The location of the SQL Server can be specified using the IP address or domain name. Click OK to return to the configuration dialog; enter a valid login ID and password and click Next. At this time, a test is automatically run to determine if the server is available. If successful, the following appear:

[image: image16.png] [image: image17.png]
The default database name should be set to the one set up for WRDB tables and the rest of the settings can remain as defaults. Finally, this dialog appears and if you wish to test the connection, a successful test shows these results:

[image: image18.png] [image: image19.png]
Configuring ODBC-MySQL

MySQL is a free SQL Server available from www.mysql.com. It can be run on Unix, and Windows 9x, NT, and 2000 operating systems. Client computers need the MyODBC drivers available from the same site. After installation, the drivers appear in the Microsoft ODBC Administrator program and a data source is added as described above.

A single configuration screen must be filled out:

[image: image20.png]
As previously mentioned, the DSN name can be whatever you desire and will be used when configuring the BDE. The domain name of IP address is entered, and the username and password can optionally be entered (as with Oracle and MS SQL Server, these can be left blank and filled in later only when connection tests are performed).

Configuring the Borland Database Engine

Start the BDE Administrator program from the Control Panel (or WRDB) and select the Databases tab.

[image: image21.png]
All previously configured Paradox aliases and ODBC databases are listed, however, by default, not all ODBC databases are immediately available to Paradox and WRDB. To make them available, you must select the database name (which is the same as the ODBC data source name [DSN]) and modify any parameter to force it to save the updated definition. For example, select the User Name, change it to a dummy value and press Enter; then select Object | Apply and confirm; then change the user name back and apply the changes again. I know this is cumbersome, but it is the best way.

You can now test your BDE connection by connecting to the new database alias by clicking on the plus sign to the left of the database alias name. Enter the database password on the following screen:

[image: image22.png]
If no error message is displayed after a few moments, the connection was successful.

At this point, both the SQL Server and BDE are configured to connect to the database server. The database alias you just created (e.g., WRDB_Oracle) will appear as an alias in Paradox and WRDB. You can directly test connectivity in WRDB as follows:

Enable supervisor mode by selecting Tools | Preferences, click the Supervisor Enabled checkbox and enter the supervisor password (it is “EPD” for both included sample projects). Next, select File | File Management | Aliases… to open the Maintain Aliases form:

[image: image23.png]
Click Alias Manager to access the Paradox Alias Manager dialog:

[image: image24.wmf]

TST

Select the database alias you just created from the drop-down list box, type the password at the bottom and then click the Connect button. After a moment, the text in the upper right will indicate that the connection is successful. Click Disconnect when you are done.

Using SQL Server Tables in WRDB

The configuration just performed required detailed knowledge of database server usernames and passwords that are security sensitive. End users possessing this information could theoretically do damage to not only WRDB tables on the SQL server, but other application tables as well. Therefore, WRDB includes an extra security layer to prevent unauthorized access to the SQL server. The following principles were applied:

1. The DBA will issue a single username and password to the departmental WRDB Administrator who is responsible for providing access to all WRDB users through a separate security system. This avoids the need for frequent DBA maintenance as WRDB users are added and deleted.

2. Only a single alias will be created to access all WRDB tables on a SQL server. In other words, simultaneous access to multiple SQL servers or tablespaces is not supported.

3. WRDB usernames and passwords are maintained in a password-protected Paradox file called SECURITY.DB. This file (along with its companion files SECURITY.PX and SECURITY.VAL) must reside in the same directory as the PDOXUSRS.NET file previously set up (that is, in the Paradox NET DIR network directory). This file contains three important items:

· The SQL Server DBA password to gain access to the WRDB security system

· The single SQL server username and password that allows all WRDB users access to server tables

· All WRDB usernames and passwords created and maintained by the WRDB Administrator; these give individual WRDB users access to SQL server tables

4. The WRDB Administrator maintains security by selecting the SQL Server button on the Preferences screen. If he has not yet configured the Paradox NET DIR or copied the SECURITY files to the appropriate network directory, the following message appears:

[image: image25.png]
Once these files are in place, you can select Tools | Preferences and click the SQL Server button to administer SQL Server and WRDB usernames and passwords. To do so, you must correctly enter the SQL Server DBA password at the following prompt:

[image: image26.png]
The SQL Server DBA password as initially set up in WRDB is EPD (case is not important). As mentioned previously, this password can be changed but if it is lost you will only be able to gain access to the SQL Server administration functions by reinstalling WRDB or by using a master override password which can be obtained from the developer.

After you enter the DBA password, you’ll see the following form:

[image: image27.png]
The SQL Server Alias Name is the alias name you previously configured to gain access the the SQL Server. You must also select the SQL Server type (there are some differences between SQL dialects that WRDB must deal with).

The SQL Server User Name and Password refer to the username and password that the SQL Server DBA gave you to access all server tables in WRDB’s database (or tablespace). This is the same username and password used to test the BDE/SQL Server connection in the previous section of this appendix.

The “Maximum number of records to fetch” entry is used to control inadvertent queries of huge numbers of records from the SQL server. Whenever you perform a query, if this number of records is exceeded an error message will appear.

The table of WRDB usernames and passwords is also displayed on the form. The WRDB Administrator uses this table to provide WRDB users access to SQL Server tables. You can maintain WRDB usernames and passwords by clicking on the table and pressing the Ins key to add another user and Cntl-Del to delete the selected user.

Finally, if you want to change the SQL Server DBA Password (the one you used to access the security system), enter it at the bottom of the screen. You must correctly confirm the entry before you can go on. Please note that changes to WRDB usernames and passwords and to the DBA password are made immediately; clicking Cancel will not undo them.

On a WRDB User’s computer, once a BDE alias pointing to an SQL Server database has been created, WRDB’s SQL Server security system begins to come into play. If you try to select a table on a SQL server, you will be prompted to enter your WRDB username and password. For example, suppose you want to select an Oracle table as a project’s master table. Do this by selecting Tools | Preferences, the Master tab, then type or browse to the BDE alias you set up for accessing the Oracle server:

[image: image28.png]
Next click Change File. Normally, you are presented a directory of DOS files to select from. However, because you are accessing an SQL server, you cannot even see a list of files without entering the appropriate SQL server username and password. Rather than make the SQL server username and password available to all WRDB users, WRDB maintains its own security system such that if you enter a valid WRDB username and password, WRDB issues the SQL server username and password (as set up by the WRDB Administrator) behind the scenes.

You are prompted to enter your WRDB username as password in two prompts:

[image: image29.png] [image: image30.png]
Once you do so, the list of available files (all prefixed by “WRDB_”) is shown:

[image: image31.png]
The first time each session that you want to access an SQL Server table, you must enter your username and password. SQL server access does not “time out”, so WRDB users should not leave their computers logged into a server when they are away from their desks. Please note, however, that Supervisor access requirements also apply to SQL server tables; a user must have Supervisor status to perform a range of destructive actions on any type of table.

The following differences exist when using SQL server tables:

· SQL server tables can be used like normal Paradox tables: they can be used for Master, Working, or Alternate files (although storage of Support tables is not fully supported at this time). You can validate and transfer data to and from SQL server tables and perform all types of queries.

· When you transfer data from a Working to a Master table which is stored on an SQL server, transfer times can be quite long. At this writing, a faster upload method can be used for both MySQL and Oracle, the latter of which required a program called SQLLDR.EXE, available with Personal Oracle 8i or from your Oracle DBA. When used, upload times are significantly reduced.

· When you open a browser to SQL server data, only the first 1000 records are displayed in the browser:

[image: image32.png]
However, all records are accessible in the SQL server table by selecting records with queries. Filter and sort are not available on the Options browser button menu; rather, a single menu item Determine Total Records is available. Also, any editing done in the browser will not be saved to the SQL server table (you are actually working on a copy of the SQL server data).

· If you have an SQL server BDE aliases defined, you should not attempt to open SQL server tables as Alternate tables. This is because when you are browsing to select an Alternate table, WRDB cannot trap when you select the SQL server alias in the file browser; Paradox will automatically prompt you for the SQL server username and password (that only the WRDB Administrator and SQL server DBA should know). Instead, use the File | Open SQL Server Table menu item.

· If you do open an Alternate table and browse to the SQL Server alias, you may see non-WRDB tables in the “directory”. Do not try to open any table that does not begin with “WRDB_”.

Because retrieval of a large number of records from an SQL server can be time-consuming, the maximum number of records to fetch is entered in the SQL Server configuration dialog. If that number is exceeded, you will see the following error message:

[image: image33.png]
· When an SQL server table is accessed, the cursor changes to an hourglass with “SQL” next to it. At this time, control is turned over to BDE and SQL Server and operations cannot be interrupted.

· SQL queries performed on SQL server tables can use server-specific functions not available on Paradox tables (see Section in manual entitled “Performing an SQL Query” for more information). The next section describes the available Oracle SQL functions.

Oracle SQL Functions

The following description of SQL functions was excerpted from Oracle8 SQL Reference Copyright © 1997 Oracle Corporation.

Number Functions
Number functions accept numeric input and return numeric values. This section lists the SQL number functions. Most of these functions return values that are accurate to 38 decimal digits. The transcendental functions COS, COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, and TANH are accurate to 36 decimal digits. The transcendental functions ACOS, ASIN, ATAN, and ATAN2 are accurate to 30 decimal digits.

ABS
	Purpose
	Returns the absolute value of n.

	Example
	SELECT ABS(-15) "Absolute" FROM DUAL;

 Absolute

 15

	

ACOS
	Purpose
	Returns the arc cosine of n. Inputs are in the range of -1 to 1, and outputs are in the range of 0 to [image: image34.png]and are expressed in radians.

	Example
	SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

Arc_Cosine

1.26610367

	

ASIN
	Purpose
	Returns the arc sine of n. Inputs are in the range of -1 to 1, and outputs are in the range of -[image: image35.png]/2 to [image: image36.png]/2 and are expressed in radians.

	Example
	SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

 Arc_Sine

.304692654

	

ATAN
	Purpose
	Returns the arc tangent of n. Inputs are in an unbounded range, and outputs are in the range of -[image: image37.png]/2 to [image: image38.png]/2 and are expressed in radians.

	Example
	SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Arc_Tangent

.291456794

	

ATAN2
	Purpose
	Returns the arc tangent of n and m. Inputs are in an unbounded range, and outputs are in the range of -[image: image39.png] to [image: image40.png], depending on the signs of n and m, and are expressed in radians. Atan2(n,m) is the same as atan2(n/m)

	Example
	SELECT ATAN2(.3, .2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent2

 .982793723

	

CEIL
	Purpose
	Returns smallest integer greater than or equal to n.

	Example
	SELECT CEIL(15.7) "Ceiling" FROM DUAL;

 Ceiling

 16

	

COS
	Purpose
	Returns the cosine of n (an angle expressed in radians).

	Example
	SELECT COS(180 * 3.14159265359/180)

"Cosine of 180 degrees" FROM DUAL;

Cosine of 180 degrees

 -1

	

COSH
	Purpose
	Returns the hyperbolic cosine of n.

	Example
	SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

 1

	

EXP
	Purpose
	Returns e raised to the nth power; e = 2.71828183 ...

	Example
	SELECT EXP(4) "e to the 4th power" FROM DUAL;

e to the 4th power

 54.59815

	

FLOOR
	Purpose
	Returns largest integer equal to or less than n.

	Example
	SELECT FLOOR(15.7) "Floor" FROM DUAL;

 Floor

 15

	

LN
	Purpose
	Returns the natural logarithm of n, where n is greater than 0.

	Example
	SELECT LN(95) "Natural log of 95" FROM DUAL;

Natural log of 95

 4.55387689

	

LOG
	Purpose
	Returns the logarithm, base m, of n. The base m can be any positive number other than 0 or 1 and n can be any positive number.

	Example
	SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL;

Log base 10 of 100

 2

	

MOD
	Syntax
	MOD(m,n)

	Purpose
	Returns remainder of m divided by n. Returns m if n is 0.

	Example
	SELECT MOD(11,4) "Modulus" FROM DUAL;

 Modulus

 3

	
	This function behaves differently from the classical mathematical modulus function when m is negative. The classical modulus can be expressed using the MOD function with this formula:

m - n * FLOOR(m/n)

	
	The following statement illustrates the difference between the MOD function and the classical modulus:

SELECT m, n, MOD(m, n),

m - n * FLOOR(m/n) "Classical Modulus"

 FROM test_mod_table;

 M N MOD(M,N) Classical Modulus

---------- ---------- ---------- -----------------

 11 4 3 3

 11 -4 3 -1

 -11 4 -3 1

 -11 -4 -3 -3

	

POWER
	Purpose
	Returns m raised to the nth power. The base m and the exponent n can be any numbers, but if m is negative, n must be an integer.

	Example
	SELECT POWER(3,2) "Raised" FROM DUAL;

 Raised

 9

	

ROUND
	Syntax

	ROUND(n[,m])

	Purpose

	Returns n rounded to m places right of the decimal point; if m is omitted, to 0 places. m can be negative to round off digits left of the decimal point. m must be an integer.

	Example 1

	SELECT ROUND(15.193,1) "Round" FROM DUAL;

 Round

 15.2

	Example 2

	SELECT ROUND(15.193,-1) "Round" FROM DUAL;

 Round

 20

	

SIGN
	Syntax
	SIGN(n)

	Purpose
	If n<0, the function returns -1; if n=0, the function returns 0; if n>0, the function returns 1.

	Example
	SELECT SIGN(-15) "Sign" FROM DUAL;

 Sign

 -1

	

SIN
	Purpose
	Returns the sine of n (an angle expressed in radians).

	Example
	SELECT SIN(30 * 3.14159265359/180)

 "Sine of 30 degrees" FROM DUAL;

Sine of 30 degrees

 .5

	

SINH
	Purpose
	Returns the hyperbolic sine of n.

	Example
	SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

 1.17520119

	

SQRT
	Purpose
	Returns square root of n. The value n cannot be negative. SQRT returns a "real" result.

	Example
	SELECT SQRT(26) "Square root" FROM DUAL;

Square root

5.09901951

	

TAN
	Purpose
	Returns the tangent of n (an angle expressed in radians).

	Example
	SELECT TAN(135 * 3.14159265359/180)

"Tangent of 135 degrees" FROM DUAL;

Tangent of 135 degrees

 - 1

	

TANH
	Purpose
	Returns the hyperbolic tangent of n.

	Example
	SELECT TANH(.5) "Hyperbolic tangent of .5"

 FROM DUAL;

Hyperbolic tangent of .5

 .462117157

	

TRUNC
	Purpose
	Returns n truncated to m decimal places; if m is omitted, to 0 places. m can be negative to truncate (make zero) m digits left of the decimal point.

	Examples
	SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;

 Truncate

 15.7

	
	SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;

 Truncate

 10

	

Character Functions
Single-row character functions accept character input and can return either character or number values.

Character Functions Returning Character Values
This section lists character functions that return character values. Unless otherwise noted, these functions all return values with the datatype VARCHAR2 and are limited in length to 4000 bytes. Functions that return values of datatype CHAR are limited in length to 2000 bytes. If the length of the return value exceeds the limit, Oracle truncates it and returns the result without an error message.

CHR
	Syntax
	CHR(n [USING NCHAR_CS])

	Purpose
	Returns the character having the binary equivalent to n in either the database character set or the national character set.

If the USING NCHAR_CS clause is not specified, this function returns the character having the binary equivalent to n as a VARCHAR2 value in the database character set.

If the USING NCHAR_CS clause is specified, this function returns the character having the binary equivalent to n as a NVARCHAR2 value in the national character set.

	
	

	Example 1
	SELECT CHR(67)||CHR(65)||CHR(84) "Dog"

 FROM DUAL;

Dog

CAT

	Example 2
	SELECT CHR(16705 USING NCHAR_CS) FROM DUAL;

C

-

A

	

CONCAT
	Syntax
	CONCAT(char1, char2)

	Purpose
	Returns char1 concatenated with char2. This function is equivalent to the concatenation operator (||). For information on this operator, see "Concatenation Operator"

 HYPERLINK "Z:\DOC\DATABASE.804\A58225\ch3all.htm" \l "997790" .

	

INITCAP
	Purpose
	Returns char, with the first letter of each word in uppercase, all other letters in lowercase. Words are delimited by white space or characters that are not alphanumeric.

	Example
	SELECT INITCAP('the soap') "Capitals" FROM DUAL;

Capitals

The Soap

	

LOWER
	Purpose
	Returns char, with all letters lowercase. The return value has the same datatype as the argument char (CHAR or VARCHAR2).

	Example
	SELECT LOWER('MR. SCOTT MCMILLAN') "Lowercase"

 FROM DUAL;

Lowercase

mr. scott mcmillan

	

LPAD
	Purpose
	Returns char1, left-padded to length n with the sequence of characters in char2; char2 defaults to a single blank. If char1 is longer than n, this function returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on your terminal screen. In most character sets, this is also the number of characters in the return value. However, in some multibyte character sets, the display length of a character string can differ from the number of characters in the string.

	Example
	SELECT LPAD('Page 1',15,'*.') "LPAD example"

 FROM DUAL;

LPAD example

..*.*.*Page 1

	

LTRIM
	Syntax
	LTRIM(char [,set])

	Purpose
	Removes characters from the left of char, with all the leftmost characters that appear in set removed; set defaults to a single blank. Oracle begins scanning char from its first character and removes all characters that appear in set until reaching a character not in set and then returns the result.

	Example
	SELECT LTRIM('xyxXxyLAST WORD','xy') "LTRIM example"

 FROM DUAL;

LTRIM exampl

XxyLAST WORD

	

NLS_INITCAP
	Purpose
	Returns char, with the first letter of each word in uppercase, all other letters in lowercase. Words are delimited by white space or characters that are not alphanumeric. The value of 'nlsparams' can have this form:

'NLS_SORT = sort'

where sort is either a linguistic sort sequence or BINARY. The linguistic sort sequence handles special linguistic requirements for case conversions. Note that these requirements can result in a return value of a different length than the char. If you omit 'nlsparams', this function uses the default sort sequence for your session. For information on sort sequences, see Oracle8 Reference.

	Example
	SELECT NLS_INITCAP

 ('ijsland', 'NLS_SORT = XDutch') "Capitalized"

 FROM DUAL;

Capital

IJsland

	

NLS_LOWER
	Syntax
	NLS_LOWER(char [, 'nlsparams'])

	Purpose
	Returns char, with all letters lowercase. The 'nlsparams' can have the same form and serve the same purpose as in the NLS_INITCAP function.

	Example
	SELECT NLS_LOWER

 ('CITTA''', 'NLS_SORT = XGerman') "Lowercase"

 FROM DUAL;

Lower

cittá

	

NLS_UPPER
	Syntax
	NLS_UPPER(char [, 'nlsparams'])

	Purpose
	Returns char, with all letters uppercase. The 'nlsparams' can have the same form and serve the same purpose as in the NLS_INITCAP function.

	Example
	SELECT NLS_UPPER

 ('gro[image: image41.png]e', 'NLS_SORT = XGerman') "Uppercase"

 FROM DUAL;

Upper

GROSS

	

REPLACE
	Syntax
	REPLACE(char,search_string[,replacement_string])

	Purpose
	Returns char with every occurrence of search_string replaced with replacement_string. If replacement_string is omitted or null, all occurrences of search_string are removed. If search_string is null, char is returned. This function provides a superset of the functionality provided by the TRANSLATE function. TRANSLATE provides single-character, one-to-one substitution. REPLACE allows you to substitute one string for another as well as to remove character strings.

	Example
	SELECT REPLACE('JACK and JUE','J','BL') "Changes"

 FROM DUAL;

Changes

BLACK and BLUE

	

RPAD
	Syntax
	RPAD(char1, n [,char2])

	Purpose
	Returns char1, right-padded to length n with char2, replicated as many times as necessary; char2 defaults to a single blank. If char1 is longer than n, this function returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on your terminal screen. In most character sets, this is also the number of characters in the return value. However, in some multibyte character sets, the display length of a character string can differ from the number of characters in the string.

	Example
	SELECT RPAD('MORRISON',12,'ab') "RPAD example"

 FROM DUAL;

RPAD example

MORRISONabab

	

RTRIM
	Syntax
	RTRIM(char [,set]

	Purpose
	Returns char, with all the rightmost characters that appear in set removed; set defaults to a single blank. RTRIM works similarly to LTRIM.

	Example
	SELECT RTRIM('BROWNINGyxXxy','xy') "RTRIM e.g."

 FROM DUAL;

RTRIM e.g

BROWNINGyxX

	

SOUNDEX
	Syntax
	SOUNDEX(char)

	Purpose
	Returns a character string containing the phonetic representation of char. This function allows you to compare words that are spelled differently, but sound alike in English.

	
	The phonetic representation is defined in The Art of Computer Programming, Volume 3: Sorting and Searching, by Donald E. Knuth, as follows:

	
	
	· Retain the first letter of the string and remove all other occurrences of the following letters: a, e, h, i, o, u, w, y.

	
	
	· Assign numbers to the remaining letters (after the first) as follows:

· b, f, p, v = 1

· c, g, j, k, q, s, x, z = 2

· d, t = 3

· l = 4

· m, n = 5

· r = 6

	
	
	· If two or more letters with the same assigned number are adjacent, remove all but the first.

	
	
	· Return the first four bytes padded with 0.

	Example
	SELECT ename

 FROM emp

 WHERE SOUNDEX(ename)

 = SOUNDEX('SMYTHE');

ENAME

SMITH

	

SUBSTR
	Syntax
	SUBSTR(char, m [,n])

	Purpose
	Returns a portion of char, beginning at character m, n characters long. If m is 0, it is treated as 1. If m is positive, Oracle counts from the beginning of char to find the first character. If m is negative, Oracle counts backwards from the end of char. If n is omitted, Oracle returns all characters to the end of char. If n is less than 1, a null is returned.

Floating-point numbers passed as arguments to substr are automatically converted to integers.

	Example 1
	SELECT SUBSTR('ABCDEFG',3.1,4) "Subs"

 FROM DUAL;

Subs

CDEF

	Example 2
	SELECT SUBSTR('ABCDEFG',-5,4) "Subs"

 FROM DUAL;

Subs

CDEF

	

SUBSTRB
	Syntax
	SUBSTR(char, m [,n])

	Purpose
	The same as SUBSTR, except that the arguments m and n are expressed in bytes, rather than in characters. For a single-byte database character set, SUBSTRB is equivalent to SUBSTR.

Floating-point numbers passed as arguments to substrb are automatically converted to integers.

	Example
	Assume a double-byte database character set:

SELECT SUBSTRB('ABCDEFG',5,4.2)

 "Substring with bytes"

 FROM DUAL;

Substring with bytes

CD

	

TRANSLATE
	Syntax
	TRANSLATE(char, from, to)

	Purpose
	Returns char with all occurrences of each character in from replaced by its corresponding character in to. Characters in char that are not in from are not replaced. The argument from can contain more characters than to. In this case, the extra characters at the end of from have no corresponding characters in to. If these extra characters appear in char, they are removed from the return value. You cannot use an empty string for to to remove all characters in from from the return value. Oracle interprets the empty string as null, and if this function has a null argument, it returns null.

	Example 1
	The following statement translates a license number. All letters 'ABC...Z' are translated to 'X' and all digits '012 . . . 9' are translated to '9':

	
	SELECT TRANSLATE('2KRW229',

'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',

'9999999999XXXXXXXXXXXXXXXXXXXXXXXXXX') "License"

 FROM DUAL;

License

9XXX999

	Example 2
	The following statement returns a license number with the characters removed and the digits remaining:

	
	SELECT TRANSLATE('2KRW229',

'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',

'0123456789')

"Translate example"

 FROM DUAL;

Translate example

2229

	

UPPER
	Syntax
	UPPER(char)

	Purpose
	Returns char, with all letters uppercase. The return value has the same datatype as the argument char.

	Example
	SELECT UPPER('Large') "Uppercase"

 FROM DUAL;

Upper

LARGE

WRDB User’s Guide
Page F–1
Revised October 27, 2000

_1005739905.doc
[image: image1.png]

TST

